Chào mừng quý vị đến với website của Lê Na
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành
viên, vì vậy chưa thể tải được các tài liệu của
Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Giờ các nước
QUAN HỆ 3 CẠNH TRONG TAM GIÁC. BẤT ĐẲNG THỨC TA

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Lê Na (trang riêng)
Ngày gửi: 17h:40' 10-03-2013
Dung lượng: 2.6 MB
Số lượt tải: 3
Nguồn:
Người gửi: Nguyễn Thị Lê Na (trang riêng)
Ngày gửi: 17h:40' 10-03-2013
Dung lượng: 2.6 MB
Số lượt tải: 3
Số lượt thích:
0 người
PHÒNG GD&ĐT CHƠN THÀNH
ĐƠN VỊ: TRƯỜNG THCS LƯƠNG THẾ VINH
Giáo viên: Nguyễn Thị Lê Na
HÌNH HỌC 7
Chào mừng quý thầy cô về dự giờ thăm lớp
4cm
6cm
5cm
C
A
2cm
1cm
4cm
Em hãy thử vẽ tam giác ABC có độ dài các cạnh là:
b) 1cm, 2cm, 4cm
a) 4cm, 5cm, 6cm
B
a)
b)
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
I- BẤT ĐẲNG THỨC TAM GIÁC:
?1
2cm
1cm
4cm
Thử vẽ tam giác có độ dài ba cạnh: 1cm, 2cm, 4cm
Hòa và Bình cùng xuất phát từ B đi đến C. Hòa đi theo đường B C, Bình đi theo đường B A C. Nếu hai người xuất phát cùng một lúc và với vận tốc như nhau thì bạn nào đến C sớm hơn?
Quãng đường của bạn Hòa:
Quãng đường của bạn Bình:
Ta thấy: AB+AC > BC
BC
AB + AC
A
B
V1
V1
C
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
I- BẤT ĐẲNG THỨC TAM GIÁC:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
I- BẤT ĐẲNG THỨC TAM GIÁC:
So sánh
AB+BC AC
AB+AC BC
AC+BC AB
với
với
với
>
>
>
Đây là nhận xét của bài toán cụ thể . Nhận xét này có đúng với mọi trường hợp không? Cô cùng các em đi chứng minh bài toán trong trường hợp tổng quát .
Qua kết quả bài toán trên em có nhận xét gì về tổng độ dài hai cạnh bất kì của tam giác này với độ dài cạnh còn lại?
4cm
6cm
5cm
C
A
B
I- BẤT ĐẲNG THỨC TAM GIÁC:
Định lí 1: Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.
Trên tia đối của tia AB lấy điểm D sao cho AD=AC.
Trong Δ DBC ta có:
(Do tia CA nằm giữa hai tia CB và CD)
ΔACD cân tại A nên:
Từ (1) và (2)
Trong Δ BCD, từ (3)
nên: AB + AC > BC
Chứng minh:
A
B
C
D
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
Mà BD = AB + AD = AB + AC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
nên: AB + AC > BC
Gợi ý: Tạo ra một tam giác có một cạnh là BC
Cạnh kia có độ dài bằng độ dài AB+AC
(QH góc và cạnh đối diện
trong tam giác)
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
AB + BC > AC
AB > BC – AC ;
BC > AC - AB
AC + BC > AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB + AC > BC
AB > BC – AC ;
AC > BC - AB
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
AB > AC – BC ;
BC > AC - AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB > BC – AC ;
AC > BC - AB
(sgk)
ABC
Nhận xét:
AC – AB < BC < AB + AC
Lưu ý: Khi xét độ dài ba đoạn thẳng có thỏa mãn bất đẳng thức tam giác hay không, ta chỉ cần so sánh độ dài lớn nhất với tổng hai độ dài còn lại, hoặc so sánh độ dài nhỏ nhất với hiệu hai độ dài còn lại.
AB + AC > BC ;
BC > AC - AB
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Trong một tam giác, độ dài một cạnh bao giờ cũng lớn
hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
AB > AC – BC ;
BC > AC - AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB > BC – AC ;
AC > BC - AB
(sgk)
ABC
Nhận xét:
AC – AB < BC < AB + AC
(sgk)
Lưu ý:
(sgk)
sai
vì 2 + 3 < 6 hoặc: vì 2 < 6 - 3
vì 2 + 4 = 6
sai
đúng
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
3 + 4 >6: thỏa mãn bđt tam giác
2/ Cho tam giác ABC với hai cạnh BC = 1cm; AC = 7cm.
a. Hãy tìm độ dài cạnh AB, biết độ dài cạnh này là một số nguyên?
a. Ta có: AC – BC < AB < AC + BC (bất đẳng thức tam giác)
Thay số: 7 - 1 < AB < 7 + 1
6 < AB < 8
Vì độ dài cạnh AB là một số nguyên, nên AB = 7 cm
b. Tam giác ABC là tam giác gì?
b. Vì AB = AC nên tam giác ABC là tam giác cân tại A
Bài tập:
Giải:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
3/ Cho hình vẽ : A: vị trí trạm biến áp. B: Khu dân cư.
C: cột mắc dây điện đưa điện từ trạm biến áp A về khu dân cư B.
Tìm vị trí của C ở gần bờ sông sao cho độ dài đường dây dẫn là ngắn nhất?
Địa điểm C thuộc đường thẳng AB và gần bờ sông có khu dân cư vì đường dây dẫn ngắn nhất khi : AC+ BC = AB.
Thật vậy, nếu dựng điểm D khác C thì theo bất đẳng thức tam giác ta có : AD + DB >AB.
C
D
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
* Điền Đ (đúng) hoặc S (sai) vào ô trống tương ứng với mỗi câu sau: bộ ba nào trong các bộ ba độ dài sau đây không thể là ba cạnh của một tam giác
1. 3cm, 4cm, 8cm
3. 2cm, 5cm, 3cm.
4. 5cm, 6cm, 9cm.
2. 3cm, 5cm, 7cm
S
Đ
S
Đ
HOẠT ĐỘNG NHÓM:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Hoc thuộc định lí, hệ quả, nhận xét về bất đẳng thức tam giác.
Xem lại các bài tập đã giải, làm các bài tập 17 (SGK) trang 63; bài tập 19; 22 (SBT) trang 26.
Chuẩn bị cho tiết “Luyện tập”.
Hướng dẫn về nhà
CHÚC CÁC EM HỌC TỐT
ĐƠN VỊ: TRƯỜNG THCS LƯƠNG THẾ VINH
Giáo viên: Nguyễn Thị Lê Na
HÌNH HỌC 7
Chào mừng quý thầy cô về dự giờ thăm lớp
4cm
6cm
5cm
C
A
2cm
1cm
4cm
Em hãy thử vẽ tam giác ABC có độ dài các cạnh là:
b) 1cm, 2cm, 4cm
a) 4cm, 5cm, 6cm
B
a)
b)
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
I- BẤT ĐẲNG THỨC TAM GIÁC:
?1
2cm
1cm
4cm
Thử vẽ tam giác có độ dài ba cạnh: 1cm, 2cm, 4cm
Hòa và Bình cùng xuất phát từ B đi đến C. Hòa đi theo đường B C, Bình đi theo đường B A C. Nếu hai người xuất phát cùng một lúc và với vận tốc như nhau thì bạn nào đến C sớm hơn?
Quãng đường của bạn Hòa:
Quãng đường của bạn Bình:
Ta thấy: AB+AC > BC
BC
AB + AC
A
B
V1
V1
C
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
I- BẤT ĐẲNG THỨC TAM GIÁC:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
I- BẤT ĐẲNG THỨC TAM GIÁC:
So sánh
AB+BC AC
AB+AC BC
AC+BC AB
với
với
với
>
>
>
Đây là nhận xét của bài toán cụ thể . Nhận xét này có đúng với mọi trường hợp không? Cô cùng các em đi chứng minh bài toán trong trường hợp tổng quát .
Qua kết quả bài toán trên em có nhận xét gì về tổng độ dài hai cạnh bất kì của tam giác này với độ dài cạnh còn lại?
4cm
6cm
5cm
C
A
B
I- BẤT ĐẲNG THỨC TAM GIÁC:
Định lí 1: Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.
Trên tia đối của tia AB lấy điểm D sao cho AD=AC.
Trong Δ DBC ta có:
(Do tia CA nằm giữa hai tia CB và CD)
ΔACD cân tại A nên:
Từ (1) và (2)
Trong Δ BCD, từ (3)
nên: AB + AC > BC
Chứng minh:
A
B
C
D
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
Mà BD = AB + AD = AB + AC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
nên: AB + AC > BC
Gợi ý: Tạo ra một tam giác có một cạnh là BC
Cạnh kia có độ dài bằng độ dài AB+AC
(QH góc và cạnh đối diện
trong tam giác)
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
AB + BC > AC
AB > BC – AC ;
BC > AC - AB
AC + BC > AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB + AC > BC
AB > BC – AC ;
AC > BC - AB
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
AB > AC – BC ;
BC > AC - AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB > BC – AC ;
AC > BC - AB
(sgk)
ABC
Nhận xét:
AC – AB < BC < AB + AC
Lưu ý: Khi xét độ dài ba đoạn thẳng có thỏa mãn bất đẳng thức tam giác hay không, ta chỉ cần so sánh độ dài lớn nhất với tổng hai độ dài còn lại, hoặc so sánh độ dài nhỏ nhất với hiệu hai độ dài còn lại.
AB + AC > BC ;
BC > AC - AB
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Trong một tam giác, độ dài một cạnh bao giờ cũng lớn
hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại
I- BẤT ĐẲNG THỨC TAM GIÁC:
(sgk)
AB + AC > BC
AC + BC > AB
AB + BC > AC
ABC
AB > AC – BC ;
BC > AC - AB
AC > AB – BC ;
BC > AB - AC
II- HỆ QUẢ CỦA BẤT ĐẲNG THỨC TAM GIÁC:
AB > BC – AC ;
AC > BC - AB
(sgk)
ABC
Nhận xét:
AC – AB < BC < AB + AC
(sgk)
Lưu ý:
(sgk)
sai
vì 2 + 3 < 6 hoặc: vì 2 < 6 - 3
vì 2 + 4 = 6
sai
đúng
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
3 + 4 >6: thỏa mãn bđt tam giác
2/ Cho tam giác ABC với hai cạnh BC = 1cm; AC = 7cm.
a. Hãy tìm độ dài cạnh AB, biết độ dài cạnh này là một số nguyên?
a. Ta có: AC – BC < AB < AC + BC (bất đẳng thức tam giác)
Thay số: 7 - 1 < AB < 7 + 1
6 < AB < 8
Vì độ dài cạnh AB là một số nguyên, nên AB = 7 cm
b. Tam giác ABC là tam giác gì?
b. Vì AB = AC nên tam giác ABC là tam giác cân tại A
Bài tập:
Giải:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
3/ Cho hình vẽ : A: vị trí trạm biến áp. B: Khu dân cư.
C: cột mắc dây điện đưa điện từ trạm biến áp A về khu dân cư B.
Tìm vị trí của C ở gần bờ sông sao cho độ dài đường dây dẫn là ngắn nhất?
Địa điểm C thuộc đường thẳng AB và gần bờ sông có khu dân cư vì đường dây dẫn ngắn nhất khi : AC+ BC = AB.
Thật vậy, nếu dựng điểm D khác C thì theo bất đẳng thức tam giác ta có : AD + DB >AB.
C
D
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
* Điền Đ (đúng) hoặc S (sai) vào ô trống tương ứng với mỗi câu sau: bộ ba nào trong các bộ ba độ dài sau đây không thể là ba cạnh của một tam giác
1. 3cm, 4cm, 8cm
3. 2cm, 5cm, 3cm.
4. 5cm, 6cm, 9cm.
2. 3cm, 5cm, 7cm
S
Đ
S
Đ
HOẠT ĐỘNG NHÓM:
Tiết 51
QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC
BẤT ĐẲNG THỨC TAM GIÁC
Hoc thuộc định lí, hệ quả, nhận xét về bất đẳng thức tam giác.
Xem lại các bài tập đã giải, làm các bài tập 17 (SGK) trang 63; bài tập 19; 22 (SBT) trang 26.
Chuẩn bị cho tiết “Luyện tập”.
Hướng dẫn về nhà
CHÚC CÁC EM HỌC TỐT
 








TIN NHẮN