BÁO THỨC

Tài nguyên dạy học

Ảnh ngẫu nhiên

Happy_new_year.swf DSC03041.jpg Hong_83.jpg CMNM_2014show0.flv Phunuvietnam_20_102.jpg Ngay_moi.swf Giaodien41jpg.jpg Thien_nguyen_viole.swf 0.Romeo_And__Juliet-_Dang_cap_nhat_[NCT_8316951878].mp3 GOI_NHO_QUE_HUONG_nhac_hoa_tau.mp3 Gia_tu_phuong_vy.mp3 Niemkhuccuoi1.swf Van_hat_loi_tinh_yeu1.swf Dichuc.jpg Doidep.swf Earth_hour_is_not_turn_off_lights_and_burn_candles.jpg Happy_New_Yer_20131.swf

CÚN CON DỄ THƯƠNG

NHẢY HIỆN ĐẠI

Thành viên trực tuyến

1 khách và 0 thành viên

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Hỗ trợ trực tuyến

    Điều tra ý kiến

    Bạn thấy trang này như thế nào?
    Đẹp
    Đơn điệu
    Bình thường
    Ý kiến khác

    Tìm kiếm Google

    (Xem báo) (Hỗ Trợ trực tuyến

    Sắp xếp dữ liệu

    Đàn ông là thế đó

    :q:

    Tulathanchuong

    Gửi người tôi yêu

    Valentinne

    NƠI BẤT ĐẦU TY

    Chào mừng quý vị đến với website của Lê Na

    Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
    Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
    Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.

    Giờ các nước


    CD BỒI DƯỠNG HSG TOÁN 6

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Nguyễn Thị Lê Na (trang riêng)
    Ngày gửi: 11h:50' 19-06-2012
    Dung lượng: 180.0 KB
    Số lượt tải: 33
    Số lượt thích: 0 người
    Chuyên đề bồi dưỡng HSG lớp 6 phần số học
    Bài 1 : TÌM CHỮ SỐ TẬN CÙNG

    Tìm chữ số tận cùng của một số tự nhiên là dạng toán hay. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có trong chương trình. Vì thế có không ít học sinh, đặc biệt là các bạn lớp 6 và lớp 7 khó có thể hiểu và tiếp thu được.
    Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS.
    Chúng ta xuất phát từ tính chất sau :
    Tính chất 1 :
    a) Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi.
    b) Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.
    c) Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1.
    d) Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 6.
    Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc. Như vậy, muốn tìm chữ số tận cùng của số tự nhiên x = am, trước hết ta xác định chữ số tận cùng của a.
    - Nếu chữ số tận cùng của a là 0, 1, 5, 6 thì x cũng có chữ số tận cùng là 0, 1, 5, 6.
    - Nếu chữ số tận cùng của a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, 3 nên từ tính chất 1c => chữ số tận cùng của x chính là chữ số tận cùng của ar.
    - Nếu chữ số tận cùng của a là 2, 4, 8, cũng như trường hợp trên, từ tính chất 1d => chữ số tận cùng của x chính là chữ số tận cùng của 6.ar.
    Bài toán 1 : Tìm chữ số tận cùng của các số : a) 799   b) 141414   c) 4567
    Lời giải : a) Trước hết, ta tìm số dư của phép chia 99 cho 4 : 99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4 => 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7 Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7. b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6. c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N) => 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
    Tính chất sau được => từ tính chất 1.
    Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
    Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.
    Bài toán 2 : Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + … + 20048009.
    Lời giải :
    Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004}).
    Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :
    (2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
    Vậy chữ số tận cùng của tổng S là 9.
    Từ tính chất 1 tiếp tục => tính chất 3.
    Tính chất 3 :
    a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3.
    b) Số có chữ số tận cùng là 2 khi nâng lên lũy
     
    Gửi ý kiến

    ĐÀN ÔNG@

    LỚP 8A2 MÚA ALIBABA - 20/11/2011